Early visual experience shapes the representation of auditory space in the forebrain gaze fields of the barn owl.
نویسندگان
چکیده
Auditory spatial information is processed in parallel forebrain and midbrain pathways. Sensory experience early in life has been shown to exert a powerful influence on the representation of auditory space in the midbrain space-processing pathway. The goal of this study was to determine whether early experience also shapes the representation of auditory space in the forebrain. Owls were raised wearing prismatic spectacles that shifted the visual field in the horizontal plane. This manipulation altered the relationship between interaural time differences (ITDs), the principal cue used for azimuthal localization, and locations of auditory stimuli in the visual field. Extracellular recordings were used to characterize ITD tuning in the auditory archistriatum (AAr), a subdivision of the forebrain gaze fields, in normal and prism-reared owls. Prism rearing altered the representation of ITD in the AAr. In prism-reared owls, unit tuning for ITD was shifted in the adaptive direction, according to the direction of the optical displacement imposed by the spectacles. Changes in ITD tuning involved the acquisition of unit responses to adaptive ITD values and, to a lesser extent, the elimination of responses to nonadaptive (previously normal) ITD values. Shifts in ITD tuning in the AAr were similar to shifts in ITD tuning observed in the optic tectum of the same owls. This experience-based adjustment of binaural tuning in the AAr helps to maintain mutual registry between the forebrain and midbrain representations of auditory space and may help to ensure consistent behavioral responses to auditory stimuli.
منابع مشابه
Early auditory experience induces frequency-specific, adaptive plasticity in the forebrain gaze fields of the barn owl.
Binaural acoustic cues such as interaural time and level differences (ITDs and ILDs) are used by many species to determine the locations of sound sources. The relationship between cue values and locations in space is frequency dependent and varies from individual to individual. In the current study, we tested the capacity of neurons in the forebrain localization pathway of the barn owl to adjus...
متن کاملTop-down control of multimodal sensitivity in the barn owl optic tectum.
We studied the effects of electrically microstimulating a gaze-control area in the owl's forebrain, the arcopallial gaze fields (AGFs), on the responsiveness of neurons in the optic tectum (OT) to visual and auditory stimuli. Microstimulation of the AGF enhanced the visual and auditory responsiveness and stimulus discriminability of OT neurons representing the same location in space as that rep...
متن کاملBinaural tuning of auditory units in the forebrain archistriatal gaze fields of the barn owl: local organization but no space map.
We identified a region in the archistriatum of the barn owl forebrain that contains neurons sensitive to auditory stimuli. Nearly all of these neurons are tuned for binaural localization cues. The archistriatum is known to be the primary source of motor-related output from the avian forebrain and, in barn owls, contributes to the control of gaze, much like the frontal eye fields in monkeys. The...
متن کاملA topographic instructive signal guides the adjustment of the auditory space map in the optic tectum.
Maps of auditory space in the midbrain of the barn owl (Tyto alba) are calibrated by visual experience. When owls are raised wearing prismatic spectacles that displace the visual field in azimuth, the auditory receptive fields of neurons in the optic tectum shift to compensate for the optical displacement of the visual field. This shift results primarily from a shift in the tuning of tectal neu...
متن کاملA Probabilistic Model of Auditory Space Representation in the Barn Owl
The barn owl is a nocturnal hunter, capable of capturing prey using auditory information alone [1]. The neural basis for this localization behavior is the existence of auditory neurons with spatial receptive fields [2]. We provide a mathematical description of the operations performed on auditory input signals by the barn owl that facilitate the creation of a representation of auditory space. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 6 شماره
صفحات -
تاریخ انتشار 1999